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Abslraer We combine the ideas of realspace renomalization and the veclor recursion 
lechnique for mullilead scattering to study the scaling of resislance with size for a 
disordered square lattice. We oblain an indication of predominant power-law dependence 
of the logarithm of the averaged mistance with size in lhe intermediate disordered 
regime, which smoothly changes lo logarithmic behaviour as the disorder goes to zero. 

1. Infrodudion 

The aim of this paper is to combine the ideas of the vector recursion technique (Godin 
and Haydock 1988, Basu er a1 1991) and real-space renormalization to study the 
scaling of resistance in disordered two-dimensional systems. Two-dimensional systems 
have been studied earlier. McKinnon and Kramer (1981) have used a slice recursion 
technique to estimate the behaviour of the localization length. They claim that for 
two-dimensional systems (even for small disorders) they find no evidence of anything 
other than exponential localization. However, in a later communication, Kramer 
(1988) states that this result (exponential localization) holds asymptotically and says 
nothing about power-law localized states in an intermediate regime as reported by 
Schreiber (1985). Power-law or weak localization was reported by Picard and Sarma 
(1981); however, their system sizes were rather small and their conclusions have 
been criticized on this point (McKinnon and Kramer 1981). Pastawski er QZ (1983) 
have used the convergence of a matrix recursion expansion of the Green function 
to examine the behaviour of the localization length. They find that as the width 
of the slices increases, a significant proportion of the localized states (for different 
configurations) shows non-exponential localization. 

If we carefully analyse the basic assumptions underlying the slice recursions, we 
mme across several points which perhaps need further discussion. 

The first point is that, in order that the relation between the Green function 
and localization length should hold, the lengths of the slices have to be very large. 
McKinnon and Kramer take slices of length 30000, while Pastawski et QI must have 
also taken similar lengths, but their convergence presumably occurred for far fewer 
steps. On the other hand the maximum widths reached for two dimensions was around 
32. The extrapolation to larger widths was achieved by noting that the localization 
length obeys a specific scaling law. Our work with the vector recursion technique 
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indicated that, as far as the scaling behaviour of the transmittance goes, a truly one- 
dimensional chain and a very narrow two-dimensional strip behave in similar manners, 
but rather differently from a square or rectangular block. It seems, therefore, rather 
suspect to assert that the scaling behaviour of a very narrow strip will extrapolate to 
large square or rectangular systems. There could be a crossover in behaviour as we 
increase the width of the strip. The work of Pastawski er a1 seems to indicate that 
this is true. As the width increases, the proportion of non-exponentially localized 
states increases. This is clearly evident for the lower disorders (for W = 4, the 
proportion becomes unity at a width of around 12). The same trend is evident for 
higher disorders, and their numerical graph indicates that, even for high disorders, 
the proportion definitely increases with increasing width and, had they achieved large 
enough widths (compared with the lengths of 30M10!), the onset of non-exponential 
localization would have been demonstrated. 

The second point refers to the stability of the slice recursion itself, which prevents 
one from accurately going to large widths. Within the slice recursions the Green 
function or the transfer matrices contain ratios of polynomials whose orders are 
comparable with the number of basis states. In slice recursion, the Green function for 
an isolated but large slice is a sensitive function of E with zeros and poles close to the 
real energy axis. In the slice recursion, many numbers of greatly differing magnitudes 
are added together, and the errors accumulate much more rapidly than with the 
vector recursion technique, whose three-term recurrences involve the addition of few 
numbers of roughly equal magnitudes. This relative stability of the vector recursion 
has been discussed in detail by Godin and Haydock (1988). 

Finally, since our aim is to study large square or rectangular blocks, we shall com- 
bine vector recursion with a real-space renormalization technique. This will enable us 
to extend our study to effectively very large sizes, although our actual calculations will 
be limited to relatively small blocks. However, at every step of the renormalization 
we shall maintain the square or rectangular shape and never resort to strip geometiy. 

2. Formalism 

2.1. Multilead vector recursion 

Our system is a two-dimensional lattice with 2N sites. The Hamiltonian has disorder 
in the diagonal terms. We attach ZM perfectly ordered semi-infinite leads covering 
its boundaries. M of these are incoming leads and M are outgoing leads. In essence 
there is no distinction between incoming and outgoing leads. Later in our formulation 
we shall remove this distinction. The purpose of these leads is to bear the incoming, 
reflected and transmitted waves into and away from the sample. We shall simulate the 
system and the leads by the following tight-b5ding nearest-neighbour Hamiltonian: 

The tight-binding basis {lm)} spans the sample while {lm')} spans the leads. 
The off-diagonal terms 1' of the sample are chosen to be unity. This sets the scale 
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of energy. The off-diagonal terms V, in the leads determine the energy window of 
the incoming and outgoing electrons and are chosen accordingly. The diagonal terms 
in the lead Hamiltonian are taken to be zero, setting the zero of the energy. The 
diagonal terms in the sample are uniformly and randomly distributed in the range 
-W/2 4 E ,  4 W/2, so that 

l / W  
(2) 

for -WIZ < E  < W/2 
{ o  otherwise. 

P (  E )  = 

The solution of the Schrlidinger equation in the leads are travelling Bloch waves 
of the form 

q, = C A e x p ( f i m t 9 ) l m ) .  (3) 
m 

As the wave travels in the leads, the phase of its wavefunction changes by 19, 
where 

c o s 6  = E / 2 V L  (4) 

E being the energy of the incoming electron. Note that, in order to have propagating 
solutions, IEl < 2VL. This sets the energy window. 

When the electronic wave enters the system from the leads, it is scattered. Part 
of it is reflected into the M incoming leads and part of it is transmitted into the A4 
outgoing leads. Let us denote the reflection coefficient of the wavelet coming in from 
the ith incoming lead and reflected into the j th  incoming lead by vij (E), and the 
transmission coefficient of the same wavelet transmitted into the j'th outgoing lead 
as t j j , ( E ) .  

To obtain the transmittance and reflectance we first block tridiagonaliie the Hamil- 
tonian using the vector recursion technique (Godin and Haydock 1988, Basu et a1 
1991). This involves changing to a new vector basis. A representation of the original 
basis Im) consists of column vectors of length 2N. A representation of the new 
vector basis consists of matrices of size 2N x 2M. The members of the new basis 
are generated in the following way. 

The first member of the basis is chosen to be 

IW = ( I U 4  ."l iM)lol) loZ) . " I O M ) )  (54 

where l i k )  and Iok) are the positions at which the incoming and outgoing leads attach 
to the system. 

The subsequent members of the basis are generated from 

The matrix inner product is defined as 
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It can easily be shown that the 2 M  x 2 M  matrices A, and 8,  are the block- 
tridiagonal members of the matrix representation of the Hamiltonian in the new 
basis: 

The wavefunction I Q )  may be represented in this new basis by a set {+n} so that 
I Q }  = E, +“lan}. These wavefunction amplitudes += also satis@ an equation 
identical with (5b). 

The boundary conditions may be imposed from the known solution in the leads: 

1 + T I L +  pI2 + .. .  -k TIM 

... 
... ... ... 

d M t l , l  + ‘ M t 1 , Z  +. ” -t ‘Mt1,M ... ... ... 
(7) 

... 

... 
exp(i0) + vllexp(-iO) + Tlzexp(-izP) + 
exp(i0) + ~ ~ ~ e x p ( - i S )  + rz2exp(-i0) + 

+ qM exp(-i0) 
+ ~ ~ ~ e x p ( - i t l )  

* I =  ( ... . I .  . . I  ... 
t,,,, exp(-i9) + tzM,2exp(-iff) + ... + t2M,M exp(-ig) 

The amplitude at the nth basis & may be written as 

& = %+a + y, +l (8) 

where X ,  and Y, satisfy the same recurrence relation as (5) with El replacing H and 
also satisfy the boundary conditions X, = 1 and X, = 0, while Yo = 0 and Y, = I. 
Note that X and Y are 2M x 262’ matrices. 

This new basis terminates after U = 2 N / 2 M  steps, as the rank of the space 
spanned by the original tight-binding basis remains unchanged after the transforma- 
tion. Hence the recursion also terminates after Y steps. This gives an additional 
boundary condition 

X”+l% + Y“tI$L = 0. (9) 

If wc now interchange the incoming and outgoing leads, we obtain another set of 
reflection coefficients ~j and transmission coefficients tij. We may put these together 
in the scattering S-matrm as 

‘11 ‘12 ’.. ‘1M “zM,l “.  %M,M 

TM1 P M 2  ’ ”  rMM t!U+l.t ..‘ ‘!Utl,M 
‘Mt1,l ..’ *M+l ,M ‘M,l ’ . ’  +MM 

t 2 ~ , 1  ... ~ M . M  < i  . . .  P;M 

+ yvtl ~ x P ( - ~ ~ ) I - ’ [ X , ~ ,  + y,,, exp(i0)j. 

... ... ... ... ) (10) s =  
. . I  ... ... ... 

(11) 

[ 
which may be obtained from 

s = - [ X  
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In the absence of magnetic fields, time-reversal symmetry holds and the two blocks 
containing the transmission coefficients are identical, while the terms in the blocks 
containing the reflection coefficients differ only in phase factors. 

The reflectance into the ith incoming channel is given by 

and similarly the transmittance into the ith outgoing channel is given by 

Here Z and U denote the sets of incoming and outgoing leads (Imry 1986). The 
Landauer formula then gives the zero-temperature conductance as 

where v; is the velocity of the electrons carrying current in the ith channel and p is 
the chemical potential of the system. In our case all the channels are equivalent, so 
that vi = vF, the Fermi velocity of the system. The above equation reduces to 

g = I / P  = ( e 2 * / W M ' W ) / R ( p )  (1%) 

where M is the number of incoming and outgoing channels, and T(  E) = xi  T,( E) 
and R ( E )  = Ci & ( E )  are the total transmittance and reflectance with T(E) + 
R( E )  = M .  

2.2 Real-space renormalization 

The renormalization procedure that we shall follow closely resembles the idea of 
' block spins in the magnetic problem. We shall divide the two-dimensional square 
lattice into rectangular blocks M I  x M2 in size as shown in figure l (a) .  We may now 
look at an isolated block as in figure l(b). The bonds which attach it to the rest of 
the system now appear as input and output leads into the block. These input leads 
bring in an electronic wave from the rest of the system into the block. The block then 
scatters this wave, the output leads take the wave away from the block and it re-enters 
back into the rest of the system. The vector recursion technique now enables us to 
obtain the scattering S-matrix which describes the scattering characteristics of this 
block in terms of its reflectance, transmittance or resistance. Note that these three 
properties are not independent. The transmittance and reflectance are related by the 
sum rule R( E) + T( E) = M ,  since there is no inelastic scattering and energy is 
conserved. The resistance is the ratio of these two. 

The crucial step is to obtain an equivalent single-site scatter of the same resisfance 
as the block. This single-scattering site is characterized by an efecfive Hamiltonian 
with diagonal term E .  

To obtain Z we proceed as follows: to this effective single-site scatterer we attach 
two semi-infinite, perfectly conducting leads, in exact analogy to the vector recursion 
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J. 

Figure 1. (U) Panition of the lattice into blocks (b)  An isolaled block, renormalition of 
the block to a single scatterer and lhe renormalized laltice. (c) The single-site scalterer 
with ordered leads. 

procedure described earlicr (see figure l(c)). In this simple problem, the vector 
recursion equations (5a) can be solved by hand to obtain 

so that the S-matrix is given by 

S = -[B,X, t + B~Y,exp(-iB)]-'[B~X, + B,Y,exp(izl)]. t 

The various symbols have already been introduced earlier. The reflection and trans- 
mission coefficients are given by 

. (E) =SI, = [(E- 2)Liexp(-it9) + V,Eexp(-iB) - (E  - i)E]/A 

t ( E )  = S,, = (2iV;sint9)/A 

where 

A = det[B,X, t + B,Y,exp(-iS)]. t 
Now, using the Landauer formula and equation (4) we obtain a relationship between 
the resistance and ?: 

p = (e2s/h)lr(E)12/lt(E)12 = (e2n/f i )2/(4v'  - E*). 
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a = dp(4V; - E2). (13) 

If we are interested only in the resistance as a physically observable quantity and 
ignore the detailed wavefunction characteristics within the sample, then these two sys- 
tems, namely the block and the single scatterer, are equivalent. We may then replace 
the Hamiltonian for the block by the efeclive Hamiltonian of the single scatterer. We 
may do this to every block in figure l(o) and finally obtain the renormalized system 
as in figure l(b). In doing this we have replaced a system with N sites by a much 
smaller system of N /  M ,  Mz sites. 

The analogy with the block spin idea is now evident There we replace a block of 
spins by a single Geclive spin and an efeclive coupling j i ,  such that the free energy 
remains invariant. Here we replace a block of scatterers by a single efecfive scatterer 
with an efececlive diagonal Hamiltonian term i, such that the resistances of the block 
and scatterer remain invariant: 

Since the different blocks involve random Hamiltonian elements, the new effective 
{ t I }  are also random. The distribution of these i, may be determined from the 
distribution of the block resistances. 

The renormalization procedure may now be iterated, by dividing the renormalized 
lattice of figure l(b) into blocks and reducing these by an identical procedure, obtain- 
ing a second level set [?I}. This will reduce the sample to a size N / ( M , M , ) z .  At 
each stage of the renormalization procedure the vector recursion will always involve 
a tixed size hf, x M ,  but will give us information about systems of increasingly larger 
sizes. 

We are, however, limited by the fact that, if all states are localized, the resistance 
will increase with increasing size, eventually reaching values too large for the computer 
to handle. Moreover, since we are interested in finding how the resistance behaves 
With size, unlike in the usual renormalization procedure, we cannot rescalc down the 
resistance at each iteration step. This dificulty occurs for large disorders, even for 
relatively small sizes as the resistances are vety large. 

Our work is complementary to that of Kramer (1988). Kramer (1988) claims that 
his results are consistent with exponential localization only. This holds asymptotically 
and does not say anything about (power-law) decay of the states in the intermediate 
regime. 

3. Results and discussion 

Figure 2 shows the distribution of the diagonal Hamiltonian elements of the efeclive 
single-site scnfferers at the end of the first four block renormalizations. Since the 
Hamiltonian elements of the individual blocks are random, the effective scatterer 
elements {e} are themselves random. Their distribution is obtained by running the 
vector recursions over up to 500 configurations of the block and obtaining the dis- 
tribution as histograms. This distribution is used in the next iteration to generate 
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Figure 2. The distribution of xattering elements for four successive steps in the renor- 
m a l i t i o n  (only the positive pan of the f axis is shown). 

t h e  effective Hamiltonians. Several features of the distributions may be commented 
upon. 

We have started from a uniform distribution centred at the origin. We first note 
that from the relationship between the resistance and E for a single scatterer the sign 
of E is immaterial. i and - Z  both give the same resistance. Moreover at every step 
of the renormalization the distributions of { t ]  are symmetric about the origin. In 
figure 2 we have shown only the positive part of the i axis. It is clear that with 
each iteration a hole of increasing width opens up at the origin although at the 
starting point there was no hole at the centre of the distribution. Why is this so? 
The initial distribution shows that there is a finite probability that e takes a value 
in the neighbourhood of zero. However, after the first renormalization, Z can only 
be zero if all {e) of the constituent block are zero. The probability that a number 
of e-values are simultaneously near zero is very small. This probabfiity becomes . 
progressively smaller as we go on iterating the renormalization procedure. Each 
wing of the distribution function becomes centred about values that are progrcssively 
larger. Although we have shown the results near the band centre, this is true for all 
values of the incoming energy within the energy window. This indicates that all states 
in two dimensions are localized and the resistance due to the disorder scattering is 
highly non-Ohmic. 

For the scaling calculations we have used blocks of sizes 48, 120 and 224. Very 
small blocks should not be used as the effect of quantum coherence which is the 
basic cause of localization may not effectively be demonstrated. Very large blocks 
also pose problcms since their resistances become too large for numerical stability. 
The strength of disorder is measured by the quantity 6 = M’/B where B is the band 
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width (energy window of the problem). We first study the case of a moderate disorder 
6 = 0.5 at E = 0.5. Figure 3 shows the plot of ( logp)  versus log(size). The points 
are numerical values. These correspond to blocks of sizes 48, 4S2, 4S4 and 4S8, 112 
and 1122, and 224 and 2242. The figure also shows the least-squares fitted straight 
line, appropriate for a power-law dependence of p on size. 

m 

LogEize) 
Figure 3. The averaged logarithm of lhe mistance versus lhe logarithm of lhe size for 
E = 0 .5  and 6 = 0.5. (A linear fit through the data points is shown.) 

Figure 4 shows a similar plot, but for disorders valying from 6 = 6.25 x 
(for the lowest graph) to 6 = 12.5 (for the highest graph) at E = 0.5. As expected, 
the power a defined by p (  N )  = poN" is a function of the disorder parameter 6 and 
continually decreases with increasing 6. 

The above study indicates that on average the resistance scales as a power law 
with the size. This power decreases with the disorder strength. The curve 6 = 
0.0373a0,529 is the best fit through the data points, and its extrapolation to very 
low disorders is shown in figure 5. In figure 6(u) we plot resistance versus log N 
for a = 1.796 x 
Throughout the size range quoted, the resistance variation at these low disorders is 
consistent with 1 + A log N. As a contrast in figure 6(b) we have shown a similar 
curve for a = 1, 6 = 0.037, in an identical size range. Even for these disorders, 
the deviation from the logarithmic form is evident. For very large disorders the value 
of the resistance becomes so large that it becomes larger than the maximum number 
that our computer can handle. In conclusion it seems that power-law behaviour is 
the correct interpolation between exponential and logarithmic limits as predicted by 
single-parameter scaling theory (Abraham et a1 1979). 

which corresponds to a disorder parameter 6 = 5.0 x 
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Y LogEize) 

FIgum 4. The averaged logarithm of the resistance versus the logarithm of lhe size for 
E = 0.5 and 6 = 6.25 x IO-', 05, 5.0 and 125. 

,,.. " .  .. - . ..... , ,,., 
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Figure 5. Variation in the width of pmbabilily distribution for c(W) versus the slope 
(I, 
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n 

0 log(N) 
Figure 6. (0) Resitancc vemw ihe logarithm of the size for 6 = 5.0 x lo-'. (6) 
Resistance versus the logarithm of the size for 6 = 0.037. 
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